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Abstract: The initial edge-chain matrix and general edge-chain matrix of graph are presented. The 
operations of the general edge-chain matrices are derived, by which a method to find all Eulerian 
cycles is obtained. Only through some power operations of the initial edge-chain matrix, can reveal 
all Eulerianian cycles which are showed in the final edge-chain matrix. This method can determine 
whether Eulerianian cycles exist or not and if they do can also find out all of them. It is effective to 
directed or undirected finite graph. And it can be simplified by computations of some row vectors 
and column vectors of some power of the initial edge-matrix. This pure mathematical method 
shows the results more intuitive and makes program operation easier. 

1. Introduction 
In graph theory, an Eulerian path is a path that visits each edge exactly once. If such a path exists, 

the graph is called semi-eulerian. An Eulerian cycle or Eulerian circuit is an Eulerian path which starts 
and ends on the same vertex. If such a cycle exists, the graph is called Eulerian [1]. These problems 
first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 
1736. Euler proved the necessary condition for the existence of Eulerian cycles [1]. 

The number of Eulerian cycles in digraphs can be calculated by using the so-called BEST theorem 
[2]. While counting the number of Eulerian cycles on undirected graphs is much more difficult. This 
problem is known to be #P-complete [3]. In a positive direction, a Markov chain Monte Carlo 
approach [4], via the Kotzig transformations is believed to give a sharp approximation for the number 
of Eulerian cycles [5-6], though as yet there is no proof of this fact (even for graphs of bounded 
degree). There are also some special algorithms to count the numbers of Eulerian cycles for some 
special graphs, such as asymptotics, asymptotic enumeration, etc, e.g. [7-14]. All these existing 
algorithms and their improvements mainly focus on the realization of algorithms and their time 
complexities. 

This paper mainly presents two new concepts, initial edge-chain matrix and general edge-chain 
matrix, and then we define some operations to study the Eulerian graph problem. This mathematical 
method can judge whether the Eulerian cycle (path) exists in a graph or not. And if it exists, can find all 
Eulerian cycles (paths) which are showed in the final edge-matrix. 

Finite graphs (directed or undirected) are discussed in this paper. 

2. Edge-chain matrices of a graph and their addition operation 
Let G (V, E) be a labeled graph with V as the set of vertices and E the set of edges. Generally let V 

= {V1,V2, …, Vn } and E = {e1 ,e2 ,…, em } separately, we denote simply E = {1 ,2 ,…, m } in this 
paper. 

Definition 1. In a given graph (directed or undirected graph), for any two vertexes, a list of 
different edges which connect them is called an edge-chain between these two points. The number of 
edges contained in an edge-chain is called the length of an edge-chain. 
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Definition 2. In a given graph, if an edge-chain starts and ends at a same point, then it is called an 
edge-chain cycle. 

An edge-chain cycle is an Eulerian cycle when it contains every edge of a graph. 
We use numbers to express the corresponding edges, and a permutation of several numbers to 

express an edge-chain containing these edges. For example, 2135 means the edge-chain 
{ }2 1 3 5, , ,e e e e or directly {2, 1, 3, 5} in this paper. Sometimes there are several edge-chains from 
vertex i to vertex j. We use the symbol“⊕ ” to indicate the operation of “addition” (union operation 
actually) of these different edge-chains. For example, (245 2135)⊕  indicates that there are two 
edge-chains {2, 4, 5} and {2, 1, 3, 5} between the certain two vertexes. 

Definition 3. Let G (V, E) be a labeled graph with V as the set of vertices and E the set of edges. 
And let n = |V|. The matrix ( )ij n np ×=  is called an initial edge-chain matrix, where 

0;    
      

       ijp
if a edge is non

one or several edges from vertex i to vertex j
from vertex i to vertex jexistent


= 


    

  
 

Definition 4: Let G (V, E) be a labeled graph with V as the set of vertices and E the set of edges. 
And let n = |V|. The matrix ( )ij p qq ×=  (1 , )p q n≤ ≤  is called a general edge-chain matrix, 
edge-chain matrix in short, where 

0;     
 -      ( );  

    ( )-  .  ijq
if a edge chain is nonexisten

some edge chains from vertex i to vertex j under a certain condition
from vertex i to vertex j under a certain conditiont


= 


     

     
 

Obviously, a general edge-chain matrix is an initial edge-chain matrix when =ij ijq p  and = =p q n . 
It should be noticed that a general edge-chain matrix is a general p q×  matrix. 
For ease of presentation, all matrices are edge-chain matrices in this paper. 
Definition 5: Let matrix ( )ijq=  be an edge-chain matrix of a graph. If an element ijq  contains 

some different edge-chains, then the maximum length of these edge-chains is called the length of ijq . 
The length of element 0 is 0.The maximum length of all elements in the matrix   is called the length 
of matrix  . 

For example, when 25 =(145 2136)q ⊕ , the length of 25q is 4. 
Obviously, the length of the initial edge-chain matrix is 1 and the length of any edge-chain matrix 

is no bigger than m . 
When an element in edge-chain matrix contains some different edge-chains, we rank these 

edge-chains by their lengths from small to big at first, and if they have the same length then rank them 
in lexicographical order, for example 25 =(145 2136 2145)q ⊕ ⊕ . 

Definition 6. The reverse permutation of an edge-chain is called an inverse order of the edge-chain. 
When both an edge-chain and its inverse order are showed at a same expression, they should be 
regarded as the same edge-chain, and be expressed by the first according to the lexicographical order. 

For example, the reverse order of 2135 is 5312, and 2135 5312 2135⊕ = . 
Definition 7. If all elements in a edge-chain matrix are 0, then the matrix is called 0 edge-chain 

matrix, denoted as Θ . 
Definition 8. (Edge-chain matrices addition). Let ( )ijf=  and ( )ijg= are two p q×  

edge-chain matrices, the addition of these two matrices is defined as ( )ij ijf g⊕ = ⊕  . 
We stipulate that for any ijf and ijg , there are 0 ,0 , ,  0 0 0ij ij ij ij ij ij ijf f g g f f f⊕ = ⊕ = ⊕ = ⊕ = . 
The addition of the two edge-chain matrices can be extended to the case of multiple edge-chain 

matrices, and such addition satisfies the commutative law and associative law. 
(1) Commutativity for summation: ⊕ = ⊕    . 
(2) Associativity for summation: ( ) ( )⊕ ⊕ = ⊕ ⊕  =   = . 
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3. Multiplication of edge-chain matrices 

Definition 9. (Edge-chain multiplication). Let ( )ijf=  and ( )ijg= are two edge-chain 
matrices, we define the product (or multiplication) of two elements ikf and kjg  is the connected 
edge-chains of these two edge-chains, denoted as ij ik kjh f g= ⊗ . If the connection is not an 
edge-chain (means the connection contains at least two same edges), then record it as 0. And if all 
connections are not edge-chains, then let 0ijh = . In the case that both ikf and kjg  contain several 
edge-chains, then their product can be expanded as the operation of polynomial multiplication. 

For example, if 25 =(145 2136 2145)f ⊕ ⊕ and 53 =(34 637)q ⊕ , then 
25 53 =(145 2136 2145) (34 637)

=(145637 2145637)
f q⊗ ⊕ ⊕ ⊗ ⊕

⊕
. 

We stipulate that for any ikf and kjg , there are 0 0 0 0 0ik kjf g⊗ = ⊗ = ⊗ = . 
It is easy to verify that the edge-chain multiplication satisfies the following rules. 
(3) Dispensability: 
( ) ( ) ( )ik ik kj ik kj ik kjf g h f h g h⊕ ⊗ = ⊗ ⊕ ⊗ ; 

( ) ( ) ( )ik kj kj ik kj ik kjf g h f g f h⊗ ⊕ = ⊗ ⊕ ⊗ . 
Definition 10 (Edge-chain matrix multiplication). Let ( )ijf=  be a p s×  edge-chain matrix 

and ( )ijg=  an s q×  edge-chain matrix. We define the multiplication of matrix  and   is a 
p q×  edge-chain matrix ( )ijh== , denoted as ⊗ =  = , where 

1 1 2 2( ) ( ) ( )ij i j i j is sjh f g f g f g= ⊗ ⊕ ⊗ ⊕ ⊕ ⊗ , ( 1, 2,3, , ;  1, 2, , )i p j q= =  . 
It is easy to prove, as in the case of ordinary matrix multiplication, the multiplication of the 

edge-chain matrices satisfies the associative law. So let , ,    be three edge-chain matrices and 
assume that the multiplication of these matrixes are legal, we have 

(4) Associativity for multiplication: 
( ) ( )⊗ ⊗ = ⊗ ⊗      . 
Definition 11. Let   be a square edge-chain matrix. For any positive integer k (k>1), define 

1k k−= ⊗   . 
When =  , we have k  for any positive integer k. 

4. The longest chains and all Eulerian cycles 

Theorem 1. Let the matrix ( )ij n np ×=  be the initial edge-chain matrix of a graph, then the 
length of matrix 2  is 2 or 0; the length of matrix 3  is 3 or 0, and so on. But there exists the 
smallest positive integer l  (1 )l m≤ ≤  such that l ≠ Θ  and 1 2l l+ += = Θ  = . So the length of 
the matrix l  is l . 

Proof. Obviously, the length of   is 1. By the definition 9-10, the lengths of all entries in 2  
are 0 and 2. If the length of all entries in 2  is 0, then 2 = Θ  and 1m = , otherwise the length of 
the matrix 2  is 2 and 2 ≠ Θ . Similarly, if 2 ≠ Θ , then the lengths of all entries in 3  are 0 
and 3. If the length of all entries in 3  is 0, then 3 = Θ  and 2m = , otherwise the length of the 
matrix 3  is 3 and 3 ≠ Θ , and so forth. With the increase of the power, the length of edge-chain 
between any two vertexes increases monotonously. However, this is a finite graph, the length of 
edge-chain between any two vertexes is limited and no more than m. So there exists the smallest 
positive integer l (1 )l m≤ ≤  such that l ≠ Θ  and 1 2l l+ += = Θ  = . Thus, the length of the 
edge-chain matrix l  is l . □ 
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Definition 12. Let matrix ( )ij n np ×=  be the initial edge-chain matrix of a graph. If there exists a 
smallest positive integer l ( 1)l ≥ such that l ≠ Θ  and 1l+ = Θ , we call l  the power length of the 
matrix . 

By definition 12 and theorem 1, the power length of the initial edge-chain matrix  is the length 
of the longest edge-chain. The length of each element in the matrix l  is either l  or 0. So the 
edge-chains with the length l  are all the longest edge-chains. 

For any two vertexes, there also exists the longest edge-chain. If we find the longest edge-chain 
from the vertex i to vertex j, then let i be the row i of the matrix  and it is continuously 
multiplied by matrix  until the element of j- th column of the final product is 0, so the element of 
j- th column of the former step product which is not 0 corresponds the longest edge-chain between 
these two points. 

Corollary 1. If the power length of the initial edge-chain matrix ( )ij n np ×=  of a graph is l , then 
the length of matrix k  is k for any positive integer k (1 )k l≤ ≤ . That is, there exists edge-chains 
with length k in matrix k . 

From Corollary 1, if we find all edge-chains with length k  from the vertex i to vertex j, then let 
(1)

i be the row i of the matrix  and multiplied by matrix  1k −  times. If the element of j th 
column of the final product is 0, then there does not exist edge-chains with length k ; and if it is not 
0, then it is all edge-chains with length k . 

Corollary 2. Suppose the power length of the initial edge-chain matrix ( )ij n np ×= of a graph is l

(1< )l m< , if the element (i,j) in the sum matrix 2

1

l
k m

k=
= ⊕ ⊕ ⊕∑      is 0, then the two 

vertexes from the vertex i to vertex j are not connective; and if it is not 0, then they are connective 
and the element (i,j) gives all edge-chains between these two vertexes. If all elements except the 

diagonal in the sum matrix 2

1

l
k m

k=
= ⊕ ⊕ ⊕∑      are not 0, then this graph is connected and 

the element (i,j) gives all edge-chains from the vertex i to vertex j. 
Corollary 3. Let   be the initial edge-chain matrix of a graph. There exists an edge-chain cycle 

with length k if and only if there are some diagonal elements of the matrix k  are not 0. 
From Corollary 3, if we calculate all edge-chain cycles with length k , just then calculate the 

diagonal of the matrix k . And if need to calculate all edge-chain cycles with different lengths, 

then calculate the diagonal of matrix
1

l
k

k=
∑ . 

Corollary 4. A graph has Eulerian cycles or paths if and only if the power length of   is m . It 
has Eulerian cycles if and only if all diagonal elements in matrix m  are all with length m . It has 
an Eulerian paths if and only if some of the non-diagonal elements in matrix m  are with length 
m . In other words, when the power length of   is m , if the diagonal elements in matrix m  
are not 0, then they are associated with all Eulerian cycles; and if some of the non-diagonal 
elements in matrix m  are not 0, then they are associated with some Eulerian paths. 

Definition 13: If the product of two edge-chains ijf  and jig ( )i j≠  is an Eulerian cycle, then

ijf  and jig  are called a pair of inverse elements. 
Theorem 2: If the initial edge-chain matrix of a graph is  , then the necessary and sufficient 

condition for the existence of the Eulerian cycle is that there exists at least a pair of inverse element 
in the matrix 1

2
m−
  and 1

2
m+
  (when n is an odd number) or 2

m
  and itself (when n is an even 

number). 
Proof: If there exists a Eulerian cycle, assume the edge-chain is 31 2 1m mj j j j j−

( 31 2 1m mj j j j j− is a permutation of 1,2,3,…,m). 
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If m is an odd, then 2 3 1 2 3 1 +1 1
2

1
2

1 m m m m m mj j j j j j j j jj jj− − −= ⊗   , where the length 

of the edge-chain 2 3
2

1 1mj j j j −  is 1
2

m −  and it is in the matrix 1
2

m−
 ; the length of the 

edge-chain +1 1
2

m m mj j j− is 1
2

m +  and it is in the matrix 1
2

m+
 . These two edge-chains are a 

pair of inverse elements. 
If m is an even, then 2 3 1 1 31 2 2 1

2 2
m m m m m mj j j j j jj j j j j j− + −= ⊗   , where the length of 

edge-chain 2 3
2

1 mj jj j  is 2
m  and it is in the matrix 2

m
 ; and the length of the edge-chain 

2 1
2

m m mj j j+ −  is also 2
m  and it is also in matrix 2

m
 . These two elements are a pair of 

inverse elements. 
Conversely, if there exists at least a pair of inverse elements in those two matrixes, then the 

product of these two edge-chains represents an Eulerian cycle. By property (4), 1 1
2 2

m mm − +
= ⊗  

(when n is an odd number) or 2 2
m mm = ⊗   (when n is an odd number), thus there exists 

Eulerian cycle in this graph.□ 
If we note the first row of   as (1)

1  and define ( ) ( 1)
1 1

k k−= ⊗   ( 1)k > , then ( )
1

k  represents 
the first row of the matrix k . And if ( )

1
k represents the first column of the matrix k , by property 

(4), we have ( ) ( 1) 1 (1)
1 1 1

k k k− −= ⊗ = ⊗     �. 
Corollary 5. If the initial edge-chain matrix of a graph is  and there exists an Eulerian cycle in 

this graph, then the product 1 1( ) ( )2 2
1 1

m m− +
⊗   (or 1 1( ) ( )2 2

1 1

m m+ −
⊗  when n  is an odd) or 

( ) ( )2 2
1 1

m m
⊗   (when n  is an even) represents all Eulerian cycles. 

For undirected graphs, the element (1, j ) is the inverse order of the element ( j ,1) in any 
edge-chain matrix, so the calculation of the matrix 1( )2

1

m+
  and ( )2

1

m
 can be simplified by using 

1( )2
1

m+
 and ( )2

1

m
  respectively. 

5. Conclusion 
We present two new concepts in this paper, the initial edge-chain matrix and the general 

edge-chain matrix, and then define some operations of these matrices to find all Eulerian cycles. This 
method can determine whether Eulerianian cycles exist or not and if they do can also find out all of 
them. Only through some power operations of the initial edge-chain matrix, can reveal all 
Eulerianian cycles which are showed in the final edge-chain matrix. This algorithm can be improved 
by computations of some row vectors and column vectors of some power of the initial edge-chain 
matrix. It is effective to directed or undirected finite graph. 
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